Logo Search packages:      
Sourcecode: icu version File versions

itrbnf.cpp

/*
 *******************************************************************************
 * Copyright (C) 1996-2000, International Business Machines Corporation and    *
 * others. All Rights Reserved.                                                *
 *******************************************************************************
 */
#include "itrbnf.h"

#include "unicode/umachine.h"

#include "unicode/tblcoll.h"
#include "unicode/coleitr.h"
#include "unicode/ures.h"
#include "unicode/ustring.h"
//#include "llong.h"

#include <string.h>

// import com.ibm.text.RuleBasedNumberFormat;
// import com.ibm.test.TestFmwk;

// import java.util.Locale;
// import java.text.NumberFormat;

// current macro not in icu1.8.1
#define TESTCASE(id,test)             \
    case id:                          \
        name = #test;                 \
        if (exec) {                   \
            logln(#test "---");       \
            logln((UnicodeString)""); \
            test();                   \
        }                             \
        break

void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/)
{
    if (exec) logln("TestSuite RuleBasedNumberFormat");
    switch (index) {
#if U_HAVE_RBNF
      TESTCASE(0, TestEnglishSpellout);
      TESTCASE(1, TestOrdinalAbbreviations);
      TESTCASE(2, TestDurations);
      TESTCASE(3, TestSpanishSpellout);
      TESTCASE(4, TestFrenchSpellout);
      TESTCASE(5, TestSwissFrenchSpellout);
      TESTCASE(6, TestItalianSpellout);
      TESTCASE(7, TestGermanSpellout);
      TESTCASE(8, TestThaiSpellout);
      TESTCASE(9, TestAPI);
      TESTCASE(10, TestFractionalRuleSet);
      // TESTCASE(11, TestLLong);
#else
      TESTCASE(0, TestRBNFDisabled);
#endif
    default:
      name = "";
      break;
    }
}

#if U_HAVE_RBNF

void 
IntlTestRBNF::TestAPI() {
  // This test goes through the APIs that were not tested before. 
  // These tests are too small to have separate test classes/functions

  UErrorCode status = U_ZERO_ERROR;
  RuleBasedNumberFormat* formatter
      = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);

  logln("RBNF API test starting");
  // test clone
  {
    logln("Testing Clone");
    RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone();
    if(rbnfClone != NULL) {
      if(!(*rbnfClone == *formatter)) {
        errln("Clone should be semantically equivalent to the original!");
      }
      delete rbnfClone;
    } else {
      errln("Cloning failed!");
    }
  }

  // test assignment
  {
    logln("Testing assignment operator");
    RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
    assignResult = *formatter;
    if(!(assignResult == *formatter)) {
      errln("Assignment result should be semantically equivalent to the original!");
    }
  }

  // test rule constructor
  {
    logln("Testing rule constructor");
    UResourceBundle *en = ures_open(NULL, "en", &status);
    if(U_FAILURE(status)) {
      errln("Unable to access resource bundle with data!");
    } else {
      int32_t ruleLen = 0;
      const UChar *spelloutRules = ures_getStringByKey(en, "SpelloutRules", &ruleLen, &status);
      if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) {
        errln("Unable to access the rules string!");
      } else {
        UParseError perror;
        RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status);
        if(!(ruleCtorResult == *formatter)) {
          errln("Formatter constructed from the original rules should be semantically equivalent to the original!");
        }
      }
      ures_close(en);
    }
  }

  // test getRules
  {
    logln("Testing getRules function");
    UnicodeString rules = formatter->getRules();
    UParseError perror;
    RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status);

    if(!(fromRulesResult == *formatter)) {
      errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!");
    }
  }


  {
    logln("Testing copy constructor");
    RuleBasedNumberFormat copyCtorResult(*formatter);
    if(!(copyCtorResult == *formatter)) {
      errln("Copy constructor result result should be semantically equivalent to the original!");
    }
  }

  // test ruleset names
  {
    logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names");
    int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames();
    if(noOfRuleSetNames == 0) {
      errln("Number of rule set names should be more than zero");
    }
    UnicodeString ruleSetName;
    int32_t i = 0;
    int32_t intFormatNum = 34567;
    double doubleFormatNum = 893411.234;
    logln("number of rule set names is %i", noOfRuleSetNames);
    for(i = 0; i < noOfRuleSetNames; i++) {
      FieldPosition pos1, pos2;
      UnicodeString intFormatResult, doubleFormatResult; 
      Formattable intParseResult, doubleParseResult;

      ruleSetName = formatter->getRuleSetName(i);
      log("Rule set name %i is ", i);
      log(ruleSetName);
      logln(". Format results are: ");
      intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status);
      doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status);
      if(U_FAILURE(status)) {
        errln("Format using a rule set failed");
        break;
      }
      logln(intFormatResult);
      logln(doubleFormatResult);
      formatter->setLenient(TRUE);
      formatter->parse(intFormatResult, intParseResult, status);
      formatter->parse(doubleFormatResult, doubleParseResult, status);

      logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());

      formatter->setLenient(FALSE);
      formatter->parse(intFormatResult, intParseResult, status);
      formatter->parse(doubleFormatResult, doubleParseResult, status);

      logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());

      if(U_FAILURE(status)) {
        errln("Error during parsing");
      }

      intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status);
      if(U_SUCCESS(status)) {
        errln("Using invalid rule set name should have failed");
        break;
      }
      status = U_ZERO_ERROR;
      doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status);
      if(U_SUCCESS(status)) {
        errln("Using invalid rule set name should have failed");
        break;
      }
      status = U_ZERO_ERROR;
    }   
    status = U_ZERO_ERROR;
  }

  // clean up
  logln("Cleaning up");
  delete formatter;
}

void IntlTestRBNF::TestFractionalRuleSet()
{
    UnicodeString fracRules(
        "%main:\n"
               // this rule formats the number if it's 1 or more.  It formats
               // the integral part using a DecimalFormat ("#,##0" puts
               // thousands separators in the right places) and the fractional
               // part using %%frac.  If there is no fractional part, it
               // just shows the integral part.
        "    x.0: <#,##0<[ >%%frac>];\n"
               // this rule formats the number if it's between 0 and 1.  It
               // shows only the fractional part (0.5 shows up as "1/2," not
               // "0 1/2")
        "    0.x: >%%frac>;\n"
        // the fraction rule set.  This works the same way as the one in the
        // preceding example: We multiply the fractional part of the number
        // being formatted by each rule's base value and use the rule that
        // produces the result closest to 0 (or the first rule that produces 0).
        // Since we only provide rules for the numbers from 2 to 10, we know
        // we'll get a fraction with a denominator between 2 and 10.
        // "<0<" causes the numerator of the fraction to be formatted
        // using numerals
        "%%frac:\n"
        "    2: 1/2;\n"
        "    3: <0</3;\n"
        "    4: <0</4;\n"
        "    5: <0</5;\n"
        "    6: <0</6;\n"
        "    7: <0</7;\n"
        "    8: <0</8;\n"
        "    9: <0</9;\n"
        "   10: <0</10;\n");

    UErrorCode status = U_ZERO_ERROR;
    UParseError perror;
    RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status);
    if (U_FAILURE(status)) {
        errln("FAIL: could not construct formatter");
    } else {
        static const char* testData[][2] = {
            { "0", "0" },
            { ".1", "1/10" },
            { ".11", "1/9" },
            { ".125", "1/8" },
            { ".1428", "1/7" },
            { ".1667", "1/6" },
            { ".2", "1/5" },
            { ".25", "1/4" },
            { ".333", "1/3" },
            { ".5", "1/2" },
            { "1.1", "1 1/10" },
            { "2.11", "2 1/9" },
            { "3.125", "3 1/8" },
            { "4.1428", "4 1/7" },
            { "5.1667", "5 1/6" },
            { "6.2", "6 1/5" },
            { "7.25", "7 1/4" },
            { "8.333", "8 1/3" },
            { "9.5", "9 1/2" },
            { ".2222", "2/9" },
            { ".4444", "4/9" },
            { ".5555", "5/9" },
            { "1.2856", "1 2/7" },
            { NULL, NULL }
        };
       doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions
    }
}

#if 0
#define LLAssert(a) \
  if (!(a)) errln("FAIL: " #a)

void IntlTestRBNF::TestLLongConstructors()
{
    logln("Testing constructors");

    // constant (shouldn't really be public)
    LLAssert(llong(llong::kD32).asDouble() == llong::kD32);

    // internal constructor (shouldn't really be public)
    LLAssert(llong(0, 1).asDouble() == 1);
    LLAssert(llong(1, 0).asDouble() == llong::kD32);
    LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1);

    // public empty constructor
    LLAssert(llong().asDouble() == 0);
    
    // public int32_t constructor
    LLAssert(llong((int32_t)0).asInt() == (int32_t)0);
    LLAssert(llong((int32_t)1).asInt() == (int32_t)1);
    LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1);
    LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff);
    LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1);
    LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000);

    // public int16_t constructor
    LLAssert(llong((int16_t)0).asInt() == (int16_t)0);
    LLAssert(llong((int16_t)1).asInt() == (int16_t)1);
    LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1);
    LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff);
    LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff);
    LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000);

    // public int8_t constructor
    LLAssert(llong((int8_t)0).asInt() == (int8_t)0);
    LLAssert(llong((int8_t)1).asInt() == (int8_t)1);
    LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1);
    LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f);
    LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff);
    LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80);

    // public uint16_t constructor
    LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0);
    LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1);
    LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1);
    LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff);
    LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff);
    LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000);

    // public uint32_t constructor
    LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0);
    LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1);
    LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1);
    LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff);
    LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1);
    LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000);

    // public double constructor
    LLAssert(llong((double)0).asDouble() == (double)0);
    LLAssert(llong((double)1).asDouble() == (double)1);
    LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff);
    LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000);
    LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001);

    // can't access uprv_maxmantissa, so fake it
    double maxmantissa = (llong((int32_t)1) << 40).asDouble();
    LLAssert(llong(maxmantissa).asDouble() == maxmantissa);
    LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa);

    // copy constructor
    LLAssert(llong(llong(0, 1)).asDouble() == 1);
    LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32);
    LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1);

    // asInt - test unsigned to signed narrowing conversion
    LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff);
    LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000);

    // asUInt - test signed to unsigned narrowing conversion
    LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1);
    LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000);

    // asDouble already tested

}

void IntlTestRBNF::TestLLongSimpleOperators()
{
    logln("Testing simple operators");

    // operator==
    LLAssert(llong() == llong(0, 0));
    LLAssert(llong(1,0) == llong(1, 0));
    LLAssert(llong(0,1) == llong(0, 1));

    // operator!=
    LLAssert(llong(1,0) != llong(1,1));
    LLAssert(llong(0,1) != llong(1,1));
    LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff));

    // unsigned >
    LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff)));

    // unsigned <
    LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1)));

    // unsigned >=
    LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff)));
    LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1)));

    // unsigned <=
    LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1)));
    LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1)));

    // operator>
    LLAssert(llong(1, 1) > llong(1, 0));
    LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff));
    LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0));
    LLAssert(llong(1, 0) > llong(0, 0x7fffffff));
    LLAssert(llong(1, 0) > llong(0, 0xffffffff));
    LLAssert(llong(0, 0) > llong(0x80000000, 1));

    // operator<
    LLAssert(llong(1, 0) < llong(1, 1));
    LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000));
    LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1));
    LLAssert(llong(0, 0x7fffffff) < llong(1, 0));
    LLAssert(llong(0, 0xffffffff) < llong(1, 0));
    LLAssert(llong(0x80000000, 1) < llong(0, 0));

    // operator>=
    LLAssert(llong(1, 1) >= llong(1, 0));
    LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff));
    LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0));
    LLAssert(llong(1, 0) >= llong(0, 0x7fffffff));
    LLAssert(llong(1, 0) >= llong(0, 0xffffffff));
    LLAssert(llong(0, 0) >= llong(0x80000000, 1));
    LLAssert(llong() >= llong(0, 0));
    LLAssert(llong(1,0) >= llong(1, 0));
    LLAssert(llong(0,1) >= llong(0, 1));

    // operator<=
    LLAssert(llong(1, 0) <= llong(1, 1));
    LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000));
    LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1));
    LLAssert(llong(0, 0x7fffffff) <= llong(1, 0));
    LLAssert(llong(0, 0xffffffff) <= llong(1, 0));
    LLAssert(llong(0x80000000, 1) <= llong(0, 0));
    LLAssert(llong() <= llong(0, 0));
    LLAssert(llong(1,0) <= llong(1, 0));
    LLAssert(llong(0,1) <= llong(0, 1));

    // operator==(int32)
    LLAssert(llong() == (int32_t)0);
    LLAssert(llong(0,1) == (int32_t)1);

    // operator!=(int32)
    LLAssert(llong(1,0) != (int32_t)0);
    LLAssert(llong(0,1) != (int32_t)2);
    LLAssert(llong(0,0xffffffff) != (int32_t)-1);

    llong negOne(0xffffffff, 0xffffffff);

    // operator>(int32)
    LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff);
    LLAssert(negOne > (int32_t)-2);
    LLAssert(llong(1, 0) > (int32_t)0x7fffffff);
    LLAssert(llong(0, 0) > (int32_t)-1);

    // operator<(int32)
    LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff);
    LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1);

    // operator>=(int32)
    LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff);
    LLAssert(negOne >= (int32_t)-2);
    LLAssert(llong(1, 0) >= (int32_t)0x7fffffff);
    LLAssert(llong(0, 0) >= (int32_t)-1);
    LLAssert(llong() >= (int32_t)0);
    LLAssert(llong(0,1) >= (int32_t)1);

    // operator<=(int32)
    LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff);
    LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1);
    LLAssert(llong() <= (int32_t)0);
    LLAssert(llong(0,1) <= (int32_t)1);

    // operator=
    LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1);

    // operator <<=
    LLAssert((llong(1, 1) <<= 0) ==  llong(1, 1));
    LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000));
    LLAssert((llong(1, 1) <<= 32) == llong(1, 0));
    LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0));
    LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used
    LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used

    // operator <<
    LLAssert((llong((int32_t)1) << 5).asUInt() == 32);

    // operator >>= (sign extended)
    LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc));
    LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde));
    LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff));
    LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000));
    LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
    LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used

    // operator >> sign extended)
    LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde));

    // ushr (right shift without sign extension)
    LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc));
    LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde));
    LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1));
    LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000));
    LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
    LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used

    // operator&(llong)
    LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));

    // operator|(llong)
    LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));

    // operator^(llong)
    LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));

    // operator&(uint32)
    LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000));

    // operator|(uint32)
    LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));

    // operator^(uint32)
    LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));

    // operator~
    LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa));

    // operator&=(llong)
    LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));

    // operator|=(llong)
    LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));

    // operator^=(llong)
    LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));

    // operator&=(uint32)
    LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000));

    // operator|=(uint32)
    LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));

    // operator^=(uint32)
    LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));

    // prefix inc
    LLAssert(llong(1, 0) == ++llong(0,0xffffffff));

    // prefix dec
    LLAssert(llong(0,0xffffffff) == --llong(1, 0));

    // postfix inc
    {
        llong n(0, 0xffffffff);
        LLAssert(llong(0, 0xffffffff) == n++);
        LLAssert(llong(1, 0) == n);
    }

    // postfix dec
    {
        llong n(1, 0);
        LLAssert(llong(1, 0) == n--);
        LLAssert(llong(0, 0xffffffff) == n);
    }

    // unary minus
    LLAssert(llong(0, 0) == -llong(0, 0));
    LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1));
    LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff));
    LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1));
    LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow

    // operator-=
    { 
        llong n;
        LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff));
        LLAssert(n == llong(0xffffffff, 0xffffffff));

        n = llong(1, 0);
        LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff));
        LLAssert(n == llong(0, 0xffffffff));
    }

    // operator-
    {
        llong n;
        LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff));
        LLAssert(n == llong(0, 0));

        n = llong(1, 0);
        LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff));
        LLAssert(n == llong(1, 0));
    }

    // operator+=
    {
        llong n(0xffffffff, 0xffffffff);
        LLAssert((n += llong(0, 1)) == llong(0, 0));
        LLAssert(n == llong(0, 0));

        n = llong(0, 0xffffffff);
        LLAssert((n += llong(0, 1)) == llong(1, 0));
        LLAssert(n == llong(1, 0));
    }

    // operator+
    {
        llong n(0xffffffff, 0xffffffff);
        LLAssert((n + llong(0, 1)) == llong(0, 0));
        LLAssert(n == llong(0xffffffff, 0xffffffff));

        n = llong(0, 0xffffffff);
        LLAssert((n + llong(0, 1)) == llong(1, 0));
        LLAssert(n == llong(0, 0xffffffff));
    }

}

void IntlTestRBNF::TestLLong()
{
    logln("Starting TestLLong");

    TestLLongConstructors();

    TestLLongSimpleOperators();

    logln("Testing operator*=, operator*");

    // operator*=, operator*
    // small and large values, positive, &NEGative, zero
    // also test commutivity
    {
        const llong ZERO;
        const llong ONE(0, 1);
        const llong NEG_ONE((int32_t)-1);
        const llong THREE(0, 3);
        const llong NEG_THREE((int32_t)-3);
        const llong TWO_TO_16(0, 0x10000);
        const llong NEG_TWO_TO_16 = -TWO_TO_16;
        const llong TWO_TO_32(1, 0);
        const llong NEG_TWO_TO_32 = -TWO_TO_32;

        const llong NINE(0, 9);
        const llong NEG_NINE = -NINE;

        const llong TWO_TO_16X3(0, 0x00030000);
        const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3;

        const llong TWO_TO_32X3(3, 0);
        const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3;

        const llong TWO_TO_48(0x10000, 0);
        const llong NEG_TWO_TO_48 = -TWO_TO_48;

        const int32_t VALUE_WIDTH = 9;
        const llong* values[VALUE_WIDTH] = {
            &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32
        };

        const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = {
            &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO,
            &ZERO, &ONE,  &NEG_ONE, &THREE, &NEG_THREE,  &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32,
            &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32,
            &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3,
            &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3,
            &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48,
            &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48,
            &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO, 
            &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO
        };

        for (int i = 0; i < VALUE_WIDTH; ++i) {
            for (int j = 0; j < VALUE_WIDTH; ++j) {
                llong lhs = *values[i];
                llong rhs = *values[j];
                llong ans = *answers[i*VALUE_WIDTH + j];

                llong n = lhs;

                LLAssert((n *= rhs) == ans);
                LLAssert(n == ans);

                n = lhs;
                LLAssert((n * rhs) == ans);
                LLAssert(n == lhs);
            }
        }
    }

    logln("Testing operator/=, operator/");
    // operator/=, operator/
    // test num = 0, div = 0, pos/neg, > 2^32, div > num
    {
        const llong ZERO;
        const llong ONE(0, 1);
        const llong NEG_ONE = -ONE;
        const llong MAX(0x7fffffff, 0xffffffff);
        const llong MIN(0x80000000, 0);
        const llong TWO(0, 2);
        const llong NEG_TWO = -TWO;
        const llong FIVE(0, 5);
        const llong NEG_FIVE = -FIVE;
        const llong TWO_TO_32(1, 0);
        const llong NEG_TWO_TO_32 = -TWO_TO_32;
        const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0);
        const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5;
        const llong TWO_TO_32X5 = TWO_TO_32 * FIVE;
        const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5;

        const llong* tuples[] = { // lhs, rhs, ans
            &ZERO, &ZERO, &ZERO,
            &ONE, &ZERO,&MAX,
            &NEG_ONE, &ZERO, &MIN,
            &ONE, &ONE, &ONE,
            &ONE, &NEG_ONE, &NEG_ONE,
            &NEG_ONE, &ONE, &NEG_ONE,
            &NEG_ONE, &NEG_ONE, &ONE,
            &FIVE, &TWO, &TWO,
            &FIVE, &NEG_TWO, &NEG_TWO,
            &NEG_FIVE, &TWO, &NEG_TWO,
            &NEG_FIVE, &NEG_TWO, &TWO,
            &TWO, &FIVE, &ZERO,
            &TWO, &NEG_FIVE, &ZERO,
            &NEG_TWO, &FIVE, &ZERO,
            &NEG_TWO, &NEG_FIVE, &ZERO,
            &TWO_TO_32, &TWO_TO_32, &ONE,
            &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE,
            &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE,
            &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE,
            &TWO_TO_32, &FIVE, &TWO_TO_32d5,
            &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5,
            &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5,
            &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5,
            &TWO_TO_32X5, &FIVE, &TWO_TO_32,
            &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32,
            &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32,
            &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32,
            &TWO_TO_32X5, &TWO_TO_32, &FIVE,
            &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE,
            &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE,
            &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE
        };
        const int TUPLE_WIDTH = 3;
        const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
        for (int i = 0; i < TUPLE_COUNT; ++i) {
            const llong lhs = *tuples[i*TUPLE_WIDTH+0];
            const llong rhs = *tuples[i*TUPLE_WIDTH+1];
            const llong ans = *tuples[i*TUPLE_WIDTH+2];

            llong n = lhs;
            if (!((n /= rhs) == ans)) {
                errln("fail: (n /= rhs) == ans");
            }
            LLAssert(n == ans);

            n = lhs;
            LLAssert((n / rhs) == ans);
            LLAssert(n == lhs);
        }
    }

    logln("Testing operator%%=, operator%%");
    //operator%=, operator%
    {
        const llong ZERO;
        const llong ONE(0, 1);
        const llong TWO(0, 2);
        const llong THREE(0,3);
        const llong FOUR(0, 4);
        const llong FIVE(0, 5);
        const llong SIX(0, 6);

        const llong NEG_ONE = -ONE;
        const llong NEG_TWO = -TWO;
        const llong NEG_THREE = -THREE;
        const llong NEG_FOUR = -FOUR;
        const llong NEG_FIVE = -FIVE;
        const llong NEG_SIX = -SIX;

        const llong NINETY_NINE(0, 99);
        const llong HUNDRED(0, 100);
        const llong HUNDRED_ONE(0, 101);

        const llong BIG(0x12345678, 0x9abcdef0);
        const llong BIG_FIVE(BIG * FIVE);
        const llong BIG_FIVEm1 = BIG_FIVE - ONE;
        const llong BIG_FIVEp1 = BIG_FIVE + ONE;

        const llong* tuples[] = {
            &ZERO, &FIVE, &ZERO,
            &ONE, &FIVE, &ONE,
            &TWO, &FIVE, &TWO,
            &THREE, &FIVE, &THREE,
            &FOUR, &FIVE, &FOUR,
            &FIVE, &FIVE, &ZERO,
            &SIX, &FIVE, &ONE,
            &ZERO, &NEG_FIVE, &ZERO,
            &ONE, &NEG_FIVE, &ONE,
            &TWO, &NEG_FIVE, &TWO,
            &THREE, &NEG_FIVE, &THREE,
            &FOUR, &NEG_FIVE, &FOUR,
            &FIVE, &NEG_FIVE, &ZERO,
            &SIX, &NEG_FIVE, &ONE,
            &NEG_ONE, &FIVE, &NEG_ONE,
            &NEG_TWO, &FIVE, &NEG_TWO,
            &NEG_THREE, &FIVE, &NEG_THREE,
            &NEG_FOUR, &FIVE, &NEG_FOUR,
            &NEG_FIVE, &FIVE, &ZERO,
            &NEG_SIX, &FIVE, &NEG_ONE,
            &NEG_ONE, &NEG_FIVE, &NEG_ONE,
            &NEG_TWO, &NEG_FIVE, &NEG_TWO,
            &NEG_THREE, &NEG_FIVE, &NEG_THREE,
            &NEG_FOUR, &NEG_FIVE, &NEG_FOUR,
            &NEG_FIVE, &NEG_FIVE, &ZERO,
            &NEG_SIX, &NEG_FIVE, &NEG_ONE,
            &NINETY_NINE, &FIVE, &FOUR,
            &HUNDRED, &FIVE, &ZERO,
            &HUNDRED_ONE, &FIVE, &ONE,
            &BIG_FIVEm1, &FIVE, &FOUR,
            &BIG_FIVE, &FIVE, &ZERO,
            &BIG_FIVEp1, &FIVE, &ONE
        };
        const int TUPLE_WIDTH = 3;
        const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
        for (int i = 0; i < TUPLE_COUNT; ++i) {
            const llong lhs = *tuples[i*TUPLE_WIDTH+0];
            const llong rhs = *tuples[i*TUPLE_WIDTH+1];
            const llong ans = *tuples[i*TUPLE_WIDTH+2];

            llong n = lhs;
            if (!((n %= rhs) == ans)) {
                errln("fail: (n %= rhs) == ans");
            }
            LLAssert(n == ans);

            n = lhs;
            LLAssert((n % rhs) == ans);
            LLAssert(n == lhs);
        }
    }

    logln("Testing pow");
    // pow
    LLAssert(llong(0, 0).pow(0) == llong(0, 0));
    LLAssert(llong(0, 0).pow(2) == llong(0, 0));
    LLAssert(llong(0, 2).pow(0) == llong(0, 1));
    LLAssert(llong(0, 2).pow(2) == llong(0, 4));
    LLAssert(llong(0, 2).pow(32) == llong(1, 0));
    LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5));

    // absolute value
    {
        const llong n(0xffffffff,0xffffffff);
        LLAssert(n.abs() == llong(0, 1));
    }

#ifdef RBNF_DEBUG
    logln("Testing atoll");
    // atoll
    const char empty[] = "";
    const char zero[] = "0";
    const char neg_one[] = "-1";
    const char neg_12345[] = "-12345";
    const char big1[] = "123456789abcdef0";
    const char big2[] = "fFfFfFfFfFfFfFfF";
    LLAssert(llong::atoll(empty) == llong(0, 0));
    LLAssert(llong::atoll(zero) == llong(0, 0));
    LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff));
    LLAssert(llong::atoll(neg_12345) == -llong(0, 12345));
    LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0));
    LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff));
#endif

    // u_atoll
    const UChar uempty[] = { 0 };
    const UChar uzero[] = { 0x30, 0 };
    const UChar uneg_one[] = { 0x2d, 0x31, 0 };
    const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 };
    const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 };
    const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 };
    LLAssert(llong::utoll(uempty) == llong(0, 0));
    LLAssert(llong::utoll(uzero) == llong(0, 0));
    LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff));
    LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345));
    LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0));
    LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff));

#ifdef RBNF_DEBUG
    logln("Testing lltoa");
    // lltoa
    {
        char buf[64]; // ascii
        LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0));
        LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0));
        LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0));
        LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0));
    }
#endif

    logln("Testing u_lltoa");
    // u_lltoa
    {
        UChar buf[64];
        LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0));
        LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0));
        LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0));
        LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0));
    }
}

/* if 0 */
#endif

void 
IntlTestRBNF::TestEnglishSpellout() 
{
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedNumberFormat* formatter
        = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);

    if (U_FAILURE(status)) {
        errln("FAIL: could not construct formatter");
    } else {
        static const char* testData[][2] = {
            { "1", "one" },
            { "2", "two" },
            { "15", "fifteen" },
            { "20", "twenty" },
            { "23", "twenty-three" },
            { "73", "seventy-three" },
            { "88", "eighty-eight" },
            { "100", "one hundred" },
            { "106", "one hundred and six" },
            { "127", "one hundred and twenty-seven" },
            { "200", "two hundred" },
            { "579", "five hundred and seventy-nine" },
            { "1,000", "one thousand" },
            { "2,000", "two thousand" },
            { "3,004", "three thousand and four" },
            { "4,567", "four thousand five hundred and sixty-seven" },
            { "15,943", "fifteen thousand nine hundred and forty-three" },
            { "2,345,678", "two million, three hundred and forty-five thousand, six hundred and seventy-eight" },
            { "-36", "minus thirty-six" },
            { "234.567", "two hundred and thirty-four point five six seven" },
            { NULL, NULL}
        };

        doTest(formatter, testData, TRUE);

        formatter->setLenient(TRUE);
        static const char* lpTestData[][2] = {
            { "fifty-7", "57" },
            { " fifty-7", "57" },
            { "  fifty-7", "57" },
            { "2 thousand six    HUNDRED fifty-7", "2,657" },
            { "fifteen hundred and zero", "1,500" },
            { "FOurhundred     thiRTY six", "436" },
            { NULL, NULL}
        };
        doLenientParseTest(formatter, lpTestData);
    }
    delete formatter;
}

void 
IntlTestRBNF::TestOrdinalAbbreviations() 
{
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedNumberFormat* formatter
        = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status);
    
    if (U_FAILURE(status)) {
        errln("FAIL: could not construct formatter");
    } else {
        static const char* testData[][2] = {
            { "1", "1st" },
            { "2", "2nd" },
            { "3", "3rd" },
            { "4", "4th" },
            { "7", "7th" },
            { "10", "10th" },
            { "11", "11th" },
            { "13", "13th" },
            { "20", "20th" },
            { "21", "21st" },
            { "22", "22nd" },
            { "23", "23rd" },
            { "24", "24th" },
            { "33", "33rd" },
            { "102", "102nd" },
            { "312", "312th" },
            { "12,345", "12,345th" },
            { NULL, NULL}
        };
        
        doTest(formatter, testData, FALSE);
    }
    delete formatter;
}

void 
IntlTestRBNF::TestDurations() 
{
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedNumberFormat* formatter
        = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status);
    
    if (U_FAILURE(status)) {
        errln("FAIL: could not construct formatter");
    } else {
        static const char* testData[][2] = {
            { "3,600", "1:00:00" },     //move me and I fail
            { "0", "0 sec." },
            { "1", "1 sec." },
            { "24", "24 sec." },
            { "60", "1:00" },
            { "73", "1:13" },
            { "145", "2:25" },
            { "666", "11:06" },
            //            { "3,600", "1:00:00" },
            { "3,740", "1:02:20" },
            { "10,293", "2:51:33" },
            { NULL, NULL}
        };
        
        doTest(formatter, testData, TRUE);
        
        formatter->setLenient(TRUE);
        static const char* lpTestData[][2] = {
            { "2-51-33", "10,293" },
            { NULL, NULL}
        };
        doLenientParseTest(formatter, lpTestData);
    }
    delete formatter;
}

void 
IntlTestRBNF::TestSpanishSpellout() 
{
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedNumberFormat* formatter
        = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
    
    if (U_FAILURE(status)) {
        errln("FAIL: could not construct formatter");
    } else {
        static const char* testData[][2] = {
            { "1", "uno" },
            { "6", "seis" },
            { "16", "diecis\\u00e9is" },
            { "20", "veinte" },
            { "24", "veinticuatro" },
            { "26", "veintis\\u00e9is" },
            { "73", "setenta y tres" },
            { "88", "ochenta y ocho" },
            { "100", "cien" },
            { "106", "ciento seis" },
            { "127", "ciento veintisiete" },
            { "200", "doscientos" },
            { "579", "quinientos setenta y nueve" },
            { "1,000", "mil" },
            { "2,000", "dos mil" },
            { "3,004", "tres mil cuatro" },
            { "4,567", "cuatro mil quinientos sesenta y siete" },
            { "15,943", "quince mil novecientos cuarenta y tres" },
            { "2,345,678", "dos mill\\u00f3n trescientos cuarenta y cinco mil seiscientos setenta y ocho"},
            { "-36", "menos treinta y seis" },
            { "234.567", "doscientos treinta y cuatro punto cinco seis siete" },
            { NULL, NULL}
        };
        
        doTest(formatter, testData, TRUE);
    }
    delete formatter;
}

void 
IntlTestRBNF::TestFrenchSpellout() 
{
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedNumberFormat* formatter
        = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status);
    
    if (U_FAILURE(status)) {
        errln("FAIL: could not construct formatter");
    } else {
        static const char* testData[][2] = {
            { "1", "un" },
            { "15", "quinze" },
            { "20", "vingt" },
            { "21", "vingt-et-un" },
            { "23", "vingt-trois" },
            { "62", "soixante-deux" },
            { "70", "soixante-dix" },
            { "71", "soixante et onze" },
            { "73", "soixante-treize" },
            { "80", "quatre-vingts" },
            { "88", "quatre-vingt-huit" },
            { "100", "cent" },
            { "106", "cent six" },
            { "127", "cent vingt-sept" },
            { "200", "deux cents" },
            { "579", "cinq cents soixante-dix-neuf" },
            { "1,000", "mille" },
            { "1,123", "onze cents vingt-trois" },
            { "1,594", "mille cinq cents quatre-vingt-quatorze" },
            { "2,000", "deux mille" },
            { "3,004", "trois mille quatre" },
            { "4,567", "quatre mille cinq cents soixante-sept" },
            { "15,943", "quinze mille neuf cents quarante-trois" },
            { "2,345,678", "deux million trois cents quarante-cinq mille six cents soixante-dix-huit" },
            { "-36", "moins trente-six" },
            { "234.567", "deux cents trente-quatre virgule cinq six sept" },
            { NULL, NULL}
        };
        
        doTest(formatter, testData, TRUE);
        
        formatter->setLenient(TRUE);
        static const char* lpTestData[][2] = {
            { "trente-un", "31" },
            { "un cents quatre vingt dix huit", "198" },
            { NULL, NULL}
        };
        doLenientParseTest(formatter, lpTestData);
    }
    delete formatter;
}

void 
IntlTestRBNF::TestSwissFrenchSpellout() 
{
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedNumberFormat* formatter
        = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status);
    
    if (U_FAILURE(status)) {
        errln("FAIL: could not construct formatter");
    } else {
        static const char* testData[][2] = {
            { "1", "un" },
            { "15", "quinze" },
            { "20", "vingt" },
            { "21", "vingt-et-un" },
            { "23", "vingt-trois" },
            { "62", "soixante-deux" },
            { "70", "septante" },
            { "71", "septante-et-un" },
            { "73", "septante-trois" },
            { "80", "octante" },
            { "88", "octante-huit" },
            { "100", "cent" },
            { "106", "cent six" },
            { "127", "cent vingt-sept" },
            { "200", "deux cents" },
            { "579", "cinq cents septante-neuf" },
            { "1,000", "mille" },
            { "1,123", "onze cents vingt-trois" },
            { "1,594", "mille cinq cents nonante-quatre" },
            { "2,000", "deux mille" },
            { "3,004", "trois mille quatre" },
            { "4,567", "quatre mille cinq cents soixante-sept" },
            { "15,943", "quinze mille neuf cents quarante-trois" },
            { "2,345,678", "deux million trois cents quarante-cinq mille six cents septante-huit" },
            { "-36", "moins trente-six" },
            { "234.567", "deux cents trente-quatre virgule cinq six sept" },
            { NULL, NULL}
        };
        
        doTest(formatter, testData, TRUE);
    }
    delete formatter;
}

void 
IntlTestRBNF::TestItalianSpellout() 
{
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedNumberFormat* formatter
        = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status);

    if (U_FAILURE(status)) {
        errln("FAIL: could not construct formatter");
    } else {
        static const char* testData[][2] = {
            { "1", "uno" },
            { "15", "quindici" },
            { "20", "venti" },
            { "23", "ventitre" },
            { "73", "settantatre" },
            { "88", "ottantotto" },
            { "100", "cento" },
            { "106", "centosei" },
            { "108", "centotto" },
            { "127", "centoventisette" },
            { "181", "centottantuno" },
            { "200", "duecento" },
            { "579", "cinquecentosettantanove" },
            { "1,000", "mille" },
            { "2,000", "duemila" },
            { "3,004", "tremilaquattro" },
            { "4,567", "quattromilacinquecentosessantasette" },
            { "15,943", "quindicimilanovecentoquarantatre" },
            { "-36", "meno trentisei" },
            { "234.567", "duecentotrentiquattro virgola cinque sei sette" },
            { NULL, NULL}
        };
        
        doTest(formatter, testData, TRUE);
    }
    delete formatter;
}

void 
IntlTestRBNF::TestGermanSpellout() 
{
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedNumberFormat* formatter
        = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status);
    
    if (U_FAILURE(status)) {
        errln("FAIL: could not construct formatter");
    } else {
        static const char* testData[][2] = {
            { "1", "eins" },
            { "15", "f\\u00fcnfzehn" },
            { "20", "zwanzig" },
            { "23", "dreiundzwanzig" },
            { "73", "dreiundsiebzig" },
            { "88", "achtundachtzig" },
            { "100", "hundert" },
            { "106", "hundertsechs" },
            { "127", "hundertsiebenundzwanzig" },
            { "200", "zweihundert" },
            { "579", "f\\u00fcnfhundertneunundsiebzig" },
            { "1,000", "tausend" },
            { "2,000", "zweitausend" },
            { "3,004", "dreitausendvier" },
            { "4,567", "viertausendf\\u00fcnfhundertsiebenundsechzig" },
            { "15,943", "f\\u00fcnfzehntausendneunhundertdreiundvierzig" },
            { "2,345,678", "zwei Millionen dreihundertf\\u00fcnfundvierzigtausendsechshundertachtundsiebzig" },
            { NULL, NULL}
        };
        
        doTest(formatter, testData, TRUE);
        
        formatter->setLenient(TRUE);
        static const char* lpTestData[][2] = {
            { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" },
            { NULL, NULL}
        };
        doLenientParseTest(formatter, lpTestData);
    }
    delete formatter;
}

void 
IntlTestRBNF::TestThaiSpellout() 
{
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedNumberFormat* formatter
        = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status);
    
    if (U_FAILURE(status)) {
        errln("FAIL: could not construct formatter");
    } else {
        static const char* testData[][2] = {
            { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" },
            { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
            { "10", "\\u0e2a\\u0e34\\u0e1a" },
            { "11", "\\u0e2a\\u0e34\\u0e1a\\u0e40\\u0e2d\\u0e47\\u0e14" },
            { "21", "\\u0e22\\u0e35\\u0e48\\u0e2a\\u0e34\\u0e1a\\u0e40\\u0e2d\\u0e47\\u0e14" },
            { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u0e23\\u0e49\\u0e2d\\u0e22\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
            { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u0e08\\u0e38\\u0e14\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" },
            { NULL, NULL}
        };
        
        doTest(formatter, testData, TRUE);
    }
    delete formatter;
}

void 
IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* testData[][2], UBool testParsing) 
{
  // man, error reporting would be easier with printf-style syntax for unicode string and formattable

    UErrorCode status = U_ZERO_ERROR;
    NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
    if (U_FAILURE(status)) {
        errln("FAIL: could not create NumberFormat");
    } else {
        for (int i = 0; testData[i][0]; ++i) {
            const char* numString = testData[i][0];
            const char* expectedWords = testData[i][1];

            Formattable expectedNumber;
            decFmt->parse(numString, expectedNumber, status);
            if (U_FAILURE(status)) {
                errln("FAIL: decFmt could not parse %s", numString);
                break;
            } else {
                UnicodeString actualString;
                FieldPosition pos;
                formatter->format(expectedNumber, actualString/* , pos*/, status);
                if (U_FAILURE(status)) {
                    UnicodeString msg = "Fail: formatter could not format ";
                    decFmt->format(expectedNumber, msg, status);
                    errln(msg);
                    break;
                } else {
                    UnicodeString expectedString = UnicodeString(expectedWords).unescape();
                    if (actualString != expectedString) {
                        UnicodeString msg = "FAIL: check failed for ";
                        decFmt->format(expectedNumber, msg, status);
                        msg.append(", expected ");
                        msg.append(expectedString);
                        msg.append(" but got ");
                        msg.append(actualString);
                        errln(msg);
                        break;
                    } else if (testParsing) {
                        Formattable parsedNumber;
                        formatter->parse(actualString, parsedNumber, status);
                        if (U_FAILURE(status)) {
                            UnicodeString msg = "FAIL: formatter could not parse ";
                            msg.append(actualString);
                            msg.append(" status code: " );
                            char buffer[32];
                            sprintf(buffer, "0x%x", status);
                            msg.append(buffer);
                            errln(msg);
                            break;
                        } else {
                            if (parsedNumber != expectedNumber) {
                                UnicodeString msg = "FAIL: parse failed for ";
                                msg.append(actualString);
                                msg.append(", expected ");
                                decFmt->format(expectedNumber, msg, status);
                                msg.append(", but got ");
                                decFmt->format(parsedNumber, msg, status);
                                errln(msg);
                                break;
                            }
                        }
                    }
                }
            }
        }
        delete decFmt;
    }
}

void 
IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2]) 
{
    UErrorCode status = U_ZERO_ERROR;
    NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
    if (U_FAILURE(status)) {
        errln("FAIL: could not create NumberFormat");
    } else {
        for (int i = 0; testData[i][0]; ++i) {
            const char* spelledNumber = testData[i][0]; // spelled-out number
            const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale
            
            UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape();
            Formattable actualNumber;
            formatter->parse(spelledNumberString, actualNumber, status);
            if (U_FAILURE(status)) {
                UnicodeString msg = "FAIL: formatter could not parse ";
                msg.append(spelledNumberString);
                errln(msg);
                break;
            } else {
                // I changed the logic of this test somewhat from Java-- instead of comparing the
                // strings, I compare the Formattables.  Hmmm, but the Formattables don't compare,
                // so change it back.

                UnicodeString asciiUSNumberString = asciiUSNumber;
                Formattable expectedNumber;
                decFmt->parse(asciiUSNumberString, expectedNumber, status);
                if (U_FAILURE(status)) {
                    UnicodeString msg = "FAIL: decFmt could not parse ";
                    msg.append(asciiUSNumberString);
                    errln(msg);
                    break;
                } else {
                    UnicodeString actualNumberString;
                    UnicodeString expectedNumberString;
                    decFmt->format(actualNumber, actualNumberString, status);
                    decFmt->format(expectedNumber, expectedNumberString, status);
                    if (actualNumberString != expectedNumberString) {
                        UnicodeString msg = "FAIL: parsing";
                        msg.append(asciiUSNumberString);
                        msg.append("\n");
                        msg.append("  lenient parse failed for ");
                        msg.append(spelledNumberString);
                        msg.append(", expected ");
                        msg.append(expectedNumberString);
                        msg.append(", but got ");
                        msg.append(actualNumberString);
                        errln(msg);
                        break;
                    }
                }
            }
        }
        delete decFmt;
    }
}

/* U_HAVE_RBNF */
#else

void
IntlTestRBNF::TestRBNFDisabled() {
    errln("*** RBNF currently disabled on this platform ***\n");
}

/* U_HAVE_RBNF */
#endif

Generated by  Doxygen 1.6.0   Back to index